Uncertainty Worksheet

2. Convert the following to percent uncertainties:

a. 2.70 ± 0.05 cm

b. 12.02 ± 0.08 cm

- 3. Convert the following to absolute uncertainties:
- a. $3.5 \text{ cm} \pm 10 \%$

b. $16 s \pm 8 \%$

4. Determine the percent uncertainties on the following measurements.

Complete these last two questions in your note book.

5. The literature value for the standard enthalpy change of combustion of methanol, $CH_3OH(l)$ was found to be -726.0kJ mol⁻¹. The experimental value was found to be -680.0 kJ mol⁻¹.

Calculate the percentage error, correct to two decimal places.

6. A student undertakes an experiment to determine the density of a copper cube. She takes the following measurement: Length = 2.00 ± 0.05 cm, Width = 2.00 ± 0.05 cm, Height = 2.00 ± 0.05 cm and mass = 74.0 ± 0.1 g

a) Calculate the density (g cm⁻³) of the copper cube from her experiment.

b) If the literature states the density of copper to be 8.95 g cm⁻¹, calculate the percentage error with the correct significant figures.

Answers

1. a) $26.50 \pm 0.05 \text{ cm}^3$ b) $3.00 \pm 0.05 \text{ cm}^3$ c) $2.45 \pm 0.05 \text{ cm}^3$ d) $67.36 \pm 0.01 \text{ cm}^3$ e) $67.356 \pm 0.001 \text{ cm}^3$ f) $21.12 \pm 0.05 \text{ °C}$ 2. a) $2.70 \text{ cm} \pm 2\%$ b) $12.02 \text{ cm} \pm 0.7 \text{ cm}^3$ f) $21.12 \pm 0.05 \text{ °C}$ 3. a) $3.5 \pm 0.4 \text{ cm}$ b) $16 \pm 1\text{ s}$ f) $21.12 \pm 0.05 \text{ °C}$

4. a) (0.01/67.36) x 100 % = 0.01% (NOTE: 1 significant figures due to dividing and uncertainty at 1 sig fig)
b) (0.001/67.356) x 100 % = 0.001% (NOTE: 1 significant figures due to dividing and uncertainty at 1 sig fig)
c) (0.05/26.50) x 100 % = 0.2% (NOTE: 1 significant figures due to dividing and uncertainty at 1 sig fig)
d) (0.05/21.13) x 100 % = 0.2% (NOTE: 1 significant figures due to dividing and uncertainty at 1 sig fig)

5.6.34%

6. a) density = $(m/V) = (74.0 / 8.00) = 9.25 \text{ g cm}^{-3}$ (NOTE: 3 significant figures due to dividing) b)Percentage error = <u>literature - experimental</u> x 100%

literature $= \frac{|8.95 - 9.25| \times 100}{8.95}$ = 3.3519% = 3.35% (NOTE: 3 significant figures due to dividing)